
**DSR Bulletin No.:** 26/2011-12/Ext.

# **Improved Production Technologies for kharif Sorghum**



RR Chapke
JS Mishra
JV Patil



### DIRECTORATE OF SORGHUM RESEARCH

(Indian Council of Agricultural Research)
Rajendranagar, Hyderabad 500 030, India



- Sorghum (Sorghum bicolor (L.) Moench) is an important cereal crop grown for food, feed and fodder in mostly dryland ecosystems of the country.
- ❖ In India, *kharif* sorghum is grown in an area of 28.92 lakhs hectare and *rabi* sorghum in 46.39 lakhs ha. Maharashtra (54%), Karnataka (18%), Rajasthan (8%), Madhya Pradesh (6%) and Andhra Pradesh (4%) are the major sorghum growing states.
- ❖ Though, the area under sorghum has declined from 18.61 m. ha in 1969-70 to 7.53 m. ha in 2008-09, its productivity has increased from 554 kg /ha to 1055 kg /ha during the same period due to adoption of improved production technologies developed by the research institutes.
- However, there is a wide gap between yields obtained by the farmers and yield potential of the improved sorghum technologies developed from the research institutes.

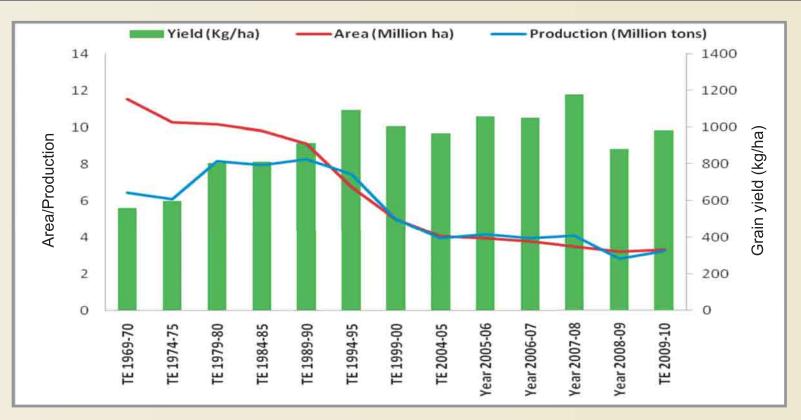
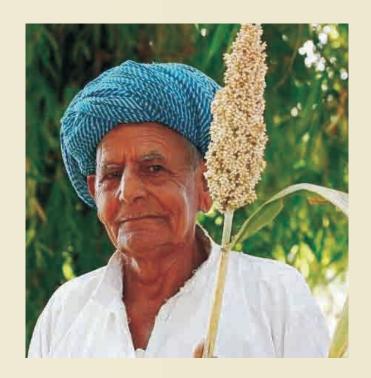




Fig 1: Trends of area, production and yield of kharif sorghum in India

### **Major constraints**

- Non-availability of seeds of high yielding cultivars in the market at proper time, place and price.
- Biotic stresses such as shoot fly at early stage and grain mold at maturity.
- Severe birds' damage due to sporadic cultivation of this crop.
- Competition with cash crops like cotton, soybean, oilseeds, vegetables, etc.
- ❖ Inadequate policy support to promote sorghum grain through public distribution system (PDS) and mid-day meal scheme.
- ❖ Fast changing food habits of human being and unawareness of nutritional value of sorghum for health.



### Scope

- ❖ To meet out the need of fodder, feed for animals and poultry in rainfed areas.
- ❖ Diversion of kharif grain over past three decades is increasing from food to industrial purposes such as biofuel, potable alcohol, starch, alternate food products, etc.
- ❖ A major source of nutritious and healthy food to the resource poor population in dryland agricultural areas.



# **High Yielding Cultivars**

# **Hybrids**

### **CSH 14**

Year of release : 1992
Duration : 105 days
Grain yield : 3.7-4.0 t/ha
Fodder yield : 8.5-9.0 t/ha

Salient features : Medium tall, early maturing,

semi-loose panicle, bold seed, tolerant to grain mold and leaf spot disease, suitable for low rainfall areas and intercropping



### **CSH 16**

Year of release : 1997
Duration : 110 days
Grain yield : 4.0-4.5 t/ha
Fodder yield : 9.5-10.0 t/ha

Salient features : Medium tall, long, loose panicle,

medium bold seed, tolerant to grain mold and resistant to leaf spot disease, easily digestible

fodder for cattle



### **CSH 23**

Year of release : 2005
Duration : 105 days
Grain yield : 4.0-4.2 t/ha
Fodder yield : 8.5-9.0 t/ha

Salient features : Medium bold and white seed, early

maturing and avoids terminal drought



### **CSH 25**

Year of release : 2007

Duration : 110-115 days Grain yield : 4.0-4.5 t/ha Fodder yield : 12-13 t/ha

Salient features : Medium tall, long semi-loose panicle, medium bold

seed, resistant to grain mold and aphids, high grain

yield with quality fodder



### **Varieties**

# **CSV 15**

Year of release : 1996

Duration : 110-112 days
Grain yield : 3.5-3.7 t/ha
Fodder yield : 11.5-12.5 t/ha

Salient features : Dual purpose, sweet stalk, bold

round seed, green forage, resistant to all leaf spot

diseases, tolerant to shootfly and stem borer.



### **CSV 17**

Year of release : 2002

Duration : 97 days

Grain yield : 2.2-2.7 t/ha

Fodder yield : 6.5-7.0 t/ha

**Salient feature**: Dwarf, early maturing with green leaves,

medium bold seed, tolerant to pests and

leaf spot diseases.



### **CSV 20**

Year of release : 2006

Duration : 109 days

Grain yield : 3.0-3.5 t/ha

Fodder yield : 13-14 t/ha

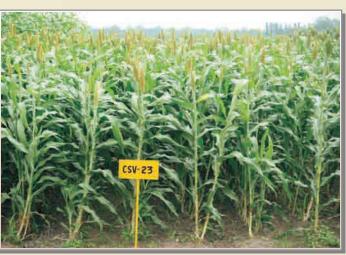
Salient features : Tall, dual purpose with medium sized

round seed, semi loose and long

panicle.



# **CSV 23**


Year of release : 2007

Duration : 110-115 days Grain yield : 2.5-3.0 t/ha Fodder yield : 15-16 t/ha

Salient features : Tall (220 cm), dual purpose for normal

rainfall sorghum growing regions, white colour grains and tolerant to shoot fly

and stem borer



# **Improved Package of Practices**

### Land preparation

- Deep ploughing once in summer followed by 2-3 harrowings
- 8-10 tonnes of farm yard mannure (FYM) per ha
- Soil application of Thirum @ 4.5 kg/ha

### Sowing

• 3<sup>rd</sup> week of June to 1<sup>st</sup> week of July with on-set of monsoon

#### Seed rate

• 7-8 kg seeds per ha (3 kg/acre)

### Spacing

- Row to row 45 cm and plant to plant distance 12 to 15 cm
- Maintain plant population as 1,80,000 plants per ha (72,000 plants per acre)

#### Seed treatment

• Treat the seed with 14 ml imidacloprid (Goucho) + 2 g carbendazim (Bavistin) for one kg seed, or thiomethaxam (Cruser) 3 g/kg seed

### Fertilizer application

• For light soils and low rainfall areas: 60 kg Nikogen, 30 kg P<sub>2</sub>O<sub>5</sub> and 20 kg K<sub>2</sub>O per ha. Apply 30 kg nitrogen, and total phosphorus and potash at sowing and remaining 30 kg nitrogen at

30-35 days after sowing (DAS).

• For medium-deep soils and moderate to high rainfall areas: 80 kg nitrogen, 40 kg  $P_2O_5$  and 40 kg  $K_2O$  per ha. Apply half nitrogen + full  $P_2O_5$  and  $K_2O$  at sowing and remaining nitrogen at 30 DAS.

#### Weed control and inter cultivation

- Keep the crop free from weeds for about initial 35 days
- Spray atrazine @ 0.5 kg a.i./ha immediately after sowing
- Striga can be controlled by hand pulling when population is less, other wise spray 2,4-D sodium salt @ 1.0 kg a.i./ha
- Two times inter cultivation with blade hoe at 3 and 5 weeks of germination.



Field preparation



Inter cultivation

# **Insect-Pest Management**

# Shoot fly

### Nature of damage

- Infestation occurs during seedling stage up to 1 month. Maggos cut the growing point and feeds on the decaying tissues.
- The infestation results in withering and drying of the central leaf, giving a typical "deadheart" symptom.

### **Control measures**

- Early sowing within 7 to 10 days of the onset of monsoon.
- ❖ High seed rate @ 10 to 12 kg/ha
- ❖ Inter cropping of sorghum + redgram in 2:1 or 2:2 ratio.
- Seed treatment with imidacloprid @14 ml/kg seed or thiamethoxam 70 WS @ 3 g/kg seed or furadan/carbofuran 50SP@100 g/kg of seed may also be used.
- ❖ Soil application of carbofuran 3G granules @20kg/ha in furrows at the time of sowing



Δdult



**Damage** 

# **Stem borer**

### Nature of damage

- ❖ It attacks the crop from 2 weeks after germination until crop harvest.
- Irregular-shaped holes on the leaves, caused by the early instar larvae feeding in the whorl.
- Drying of central shoot giving "deadheart" look.
- Extensive stem tunneling.
- ❖ After panicle emergence, peduncle tunneling results in their breaking or result in complete or partial chaffy panicles.

### **Control measure**

- Uprooting and burning of stubbles and chopping of stems of earlier crop to prevent its carryover.
- Need-based application of carbofuran 3G, carbaryl 3G, or furadan 3G @ 8-12 kg/ha at 20 and 35 days after emergence inside the leaf whorls.
- Intercropping of sorghum with cowpea.



Adult



Damage

# **Disease Management**

### **Grain mold**

### **Symptoms**

- ◆ Grains show symptoms of fungal infection and develop fugal bloom of various colours (black, white or pink) depending on fungus.
- ◆ The infected grains are soft, powdery, low in nutritional quality, poor germination and acceptability for human consumption.

#### Control measures

- ◆ Harvesting of genotypes at physiological maturity and drying.
- ◆ Spray of Tilt 25% EC @ 0.2% starting from flowering and another spray after 10 days interval.

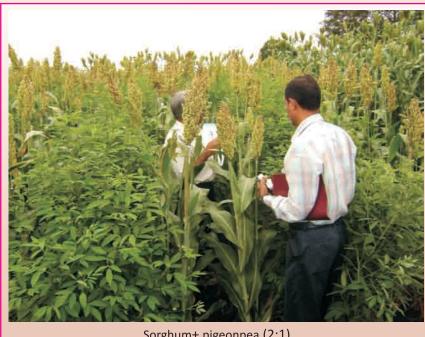


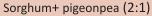
# Downy mildew

### **Symptoms**

- ◆ The most conspicuous symptom is the appearance of vivid green and white stripes on the leaves and white patches of oospores.
- ◆ Whole leaves may become chlorotic at advance stage and plants usually fail to exert panicles. Even if panicles are exerted, they are small, compact or club-shaped and have little or no seed set .

#### **Control measures**


- ◆ Deep ploughing before planting to reduce oospores.
- ◆ Seed dressing with metalaxyl/ ridomil25@ 1g a.i./kg.seed followed by spray with ridomyl-MZ @ 3g/liter water.




# **Sorghum-based Cropping Systems**

### **Intercropping**

- Intercropping sorghum with legumes not only produces higher yields per unit area and time, but also provides nutritional security, economic benefits and improves soil health.
- Sorghum+ pigeonpea (2:1) and sorghum+ soybean (3:6) are the two most common sorghum based intercropping systems in the country.
- Sorghum + fodder cowpea (2:2) provides nutritive green fodder, helps to improve soil fertility and checks weed growth.
- Medium duration sorghum genotype like CSH 16, CSH 18, CSH 23, CSV 15 and CSV 20 are most suitable for intercropping.







### Sequence cropping

- Sorghum (kharif)-chickpea, safflower and mustard (rabi) are the most suitable cropping sequences under limited irrigation conditions.
- These cropping sequences are more profitable in areas receiving annual rainfall above 700 mm and in medium to deep soils having high water retention capacity.
- In irrigated situations, sorghum-wheat sequence is also followed in some parts of northern and Central India.

# **Impact of the Technologies**

- O The area under sorghum is reduced drastically from 17.37 m ha in 1970-71 to 7.67 m ha in 2009-10. However, due to concerted efforts made by the scientists, extension workers, developmental; agencies and farmers, average productivity has now reached to >1000 kg/ha during 2009-10.
- Latest sorghum cultivars (CSH 23, CSV 20, CSV 23, CSV 17 and CSV 15) demonstrated under frontline demonstrations (FLDs) gave up to 67% higher grain yield and up to 64% higher stover yield than the local cultivars during *kharif* 2009 (Fig. 2). On an average, the demonstrated cultivars gave 56% more net profit (Rs.17,955/-per ha), than the local cultivars (Rs. 11,494/- per ha).

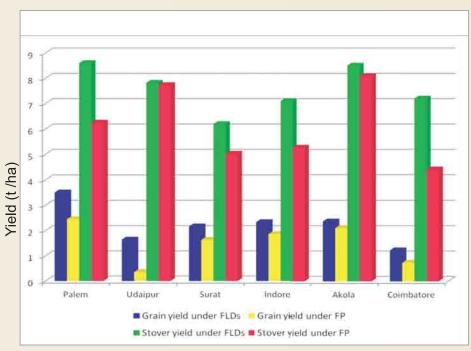



Fig. 2. Performance of latest sorghum cultivars over local (FP) under *kharif* FLDs



Interaction with farmers on *kharif* FLD field at Jorjika Kheda village in Udaipur, Rajasthan

# **Acknowledgements**

The information provided by Dr. VR Bhagwat, Principle Scientist, Entomology, and Dr. IK Das, Senior Scientist, Plant Pathology, DSR for this manuscript is duly acknowledged.

